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Abstract—We present an optimal sidelobe blanker (SLB) de- Normalized Gain
tector for Swerling-1 and Swerling-0 targets and compare tle
performances of the suggested detector with the classical &ikel
SLB structure. The optimal SLB detector depends on the signa

Main antenna pattern

to noise ratio (SNR) and jammer to noise ratio (JNR) values ad 82 <wr«1
may not be practical for implementation in many applications. g2 = %2>1

The goal of this work is to compare the Maisel structure with
the optimal detector which utilizes additional information on
target and jammer and assesses the performance gap between
two systems. Numerical results show that the performance of
Maisel SLB structure is close to the optimal detector under ery
practical conditions. *
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|. INTRODUCTION

In the conventional radar systems, the interfering signals
intercepted from the antenna sidelobes can cause problem
such as false target detection and poor tracking accuracy et

To mitigate the effects of sidelobe signals, a sidelobelkian getail and derives the probability of blanking the jammer in
(SLB) architecture is proposed by Maisel in [1]. In the M&is&sidelobe {,), the probability of blanking the target in main
structure, two receiving channels are used. The first oneggam C.), the probability of false target due to jammer in
the main channel whose antenna has high gain in main begge|obe ©;+) for Swerling-0 target model. In [3], Farina and
and low gain in the sidelobes. The second channel is callgthj extends the aforementioned probability calculatiotite

the auxiliary channel which has an omnidirectional patterd Swerling-1 targets.

has flat gain slightly_ gre.aterthan the sidelobe gain of theyma Tnhe classical SLB model is widely accepted and has been
antenna as shown in Fig. 1. . utilized in many systems. However, to the best of our knowl-

The blanking signal is generated when the ratio of thejge an optimality property of the classical SLB structure
auxiliary channel outputv) to main channel outputu), that i, some sense, is not given in the literature. In [4], it is
is (v/u), is greater than blanking threshaltlas shown in Fig. noted that the SLB systems derived from Neyman-Pearson
2. When the ratia)/u exceeds thresholff, the main channel |ielihood ratio test (LRT) is hard to implement in real time
is blanked. An erroneous blanking of the main channel resulf,q maisel structure is suggested as a substitute with deimp
in a loss of detection probability. implementation and an effective result.

It is easy to note from Fig. 1 that the gain of the omnidirec- | this work, we discuss an optimal SLB system for
tional antenndw?) should satisfy the conditian®/6* = 5 > werling-1 and Swerling-0 targets and compare the perfor-
1 for a satisfactory operation. This condition can be easifyjance of the optimal detector with the classical Maiselcstru
justified by noting that an interfering signal in the sidedoby,re under different operating conditions. Numerical hesu
sayu; produces an auxiliary channel output@fu. To blank g gqgest that the classical SLB system is close to the optimal
this signal, the condition 0B? > F is trivially required, [1]. system under highly practical operating conditions. Hetioe

A similar consideration for the main channel, that is in erdg,resent work can be considered as a justification for the good
not to blank the main beam signal, the conditionusf < F performance of the Maisel structure.

is also necessary, [1].
The classical SLB systems are thoroughly studied in the ||. PROPOSEDSIDELOBE BLANKING SYSTEM FOR
literature. In [2], Farina examines the classical SLB sysie SWERLING-1 TARGETS

SFig. 1. Gain patterns of main and auxiliary antenna in SLBesys

1This version of the paper contains some minor correctiores the version Let 5 and 7 der_]Ote the C(_)r_nplex valued matched _fl_lter_ed
appearing Radar Conference, 2014 IEEE. outputs of the main and auxiliary channels at a specific time.
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Fig. 2. Basic block diagram of classical SLB system

We have three hypotheses to choose: noise ¢0Hly), target The likelihood ratio test to discriminaté; and H, hypotheses
in main lobe and no jammer in sideloké’;), jammer in can be written as:
sidelobe and no target in main lIoQé&/):

s ey 5= &+ s
Hol{ ~7[{1!{ . ~,H22{~ N ¢ 5
Wy a —+ wy 7 = B¢+ w,

In (1), a ~ CN(0,02) andé ~ CN (0, 02) indicate Swerling-1

X; H2
bl 2 ¢ @

fX(XQHl) H,

Taking the logarithm ofA(7, §) and ignoring non-data depen-
dent terms, we reach the following test [6]:
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£ =
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target models [5] andis ~ CN(0,0?) and @, ~ CN(0,0?) o » Hy
denote receiver noise in main and auxiliary channels, re- d=x"(C;" -Cy)x 2 7 (4)
spectively. Here CA/(0,0%) represents zero mean complex Hy

circularly symmetric Gaussian random variables having thge test consists of quadratic forms of complex Gaussian

variance ofs2. Note that by jammer, we mean an interferingandom variables.

target in sidelobe. The statistic ofx” Qx is important in several telecommu-
The parametersy and 8 appearing in (1) are the sidelobenication applications [7]-[10]. Following the notation pf]

gain of main antenna and gain of the auxiliary antenna (alaad [9], we define th& matrix

see Fig. 1). Signal-to-noise (SNR) and jammer-to-noisesat N o . ) A C
(JNR) are defined as: Q£s°(CT'—-CyY) = [C B] ; 5)
SNR Ella*] o2 whose entries can be calculated through elementary algsbra
= —7 = —F = ’ys
Ellws|?] o2 Ysw? +1 v B2 +1
Ele?] o A=—5 T a1 (6a)
IJNR = - _C:’Yj Vs W +75+1 '7]6 +’7]+1
Ellws?] o2 Vs + 1 v +1
B= (6b)
We note that the random variablésand 5 are correlated. Ts Ts i Vi
The correlation under different hypotheses is as follows: C—=_ Ts @ B; (6¢)
E[f§*;H] = wo? and E[f§*; Hy] = Bo2. We introduce Ysw?+ys+1 0 B2+ +1
x = [5 f]T as a two dimensional Gaussian random vectofhe decision statisticgd in (4) can be expressed as follows:
with the correlation matrixC; as follows: d=x"Qx = Al32 + BF? + 2CRe(75") @)
E[3] H;] E[57* H]| and its pdf can be written as follows, [7] and [8]:
C, = E[xx";H;] = i={1,2}
7 E[3*i H)]  E[#% H]] 7 ab
" exp(—ad) d>0
a
The probability density function (pdf) of underH; becomes fa(d) = (8)
1 RN ab bd) d<0
Jx(x; Hy) = WGXP (—x"Ci %), i ={1,2} aereXp( ) <

The parametera andb appearing in (8) are defined through
and the covariance matriceS; and C, can be given as a rather complicated functions gf:; andr, [9]:

follows: .
a=|r%+ —r (9a)
Cr=o? [% 1wy } | (2a) V Hprepss — |usr?)(ICF2 — AB)
wys  wys+1

1
oyt B b=,/r2+ +r 9b
Gr=o Tt 0 (2b) Warerime— PP =45 T )




where ;3 = %E[fg*] and having SNR of 5 dB and the associatBg and P, values for
Atton 4 Biiee + C* % + Ciine different JNR values are given. It can be noted that from this
r= ZHT Hss 5 Hrs figure, dependency aP, on JNR is quite weak for INR 15
Aprrpss — |ps?)(|C — AB) dB.
Threshold Calculation: The threshold; for the Neyman-
Pearson test can be easily calculated from (8). For a giv w? =-30 dB, 82 = 5 dB, Py, = 0.03
target blanking probability?,, (declaring H, when H; is ' ' : 7
true), the threshold) appearing inPy, = Pr(Hs|Hy) =
fnoo Jajm, (x)dx can be written as follows:

1 a+b b
—Z1 P, P,
an[( b > “’} AT

1 a+b b
[ () o] s

Blanking Probability Calculation: Using the threshold,
one can find the probability of blanking the jammer in sidelob
Py = Pr(Hs|Hs) = [* fam,(x)dz, as follows:

s

V

(10)

IN

exp (—an) n>0
= a;rb 1 b b <0 -
(o) + g s

This completes the derivation of main results for the me JNR (dB)

tioned SLB system.
Comments: We present a quantitative critique of the Squg. 3. Dependency of; on JNR for the suggested detector (Swerling-1
gested detector and discuss the practical issues about Y-
implementation. The optimal test for Swerling-1 targetgegi
in (4) depends on several parameters including operatirfg SM
and JNR. Hence, the optimality, in the sense of Neyme
Pearson, is achieved through the knowledge target and jami /|
specific parameters which are not utilized in the classic 99.9
Maisel SLB system. Hence, the performance superiority of tl 995 |
suggested detector (if any) can be attributed to this auftiti 99
knowledge. In several applications, it is not possible tmbdy J
estimate SNR and JNR values on-the-fly and resorting

B2 =5 dB,w? = -30 dB, SNR = 5 dB
99.99 :

classical Maisel structure is unavoidable. Yet, the penbmice '} INR= 548 |
gap betwegn tht_e the opymal and Maisel structures, in spite £ 79| INRZ 348, ]
the unavailable information for the conventional struefuwran = JNR= 12 dB

be of interest and examined in this study.

In the following section, we present a numerical comparisc 30
of Maisel structure and the optimal detector. It is assurhadl t
both systems are equipped with an antenna having identi

w and g3 values. Both detectors are adjusted to meet a giv T 1
target blanking (false blanking) probability. We woulddiko f ]
reiterate that the optimal detector uses both SNR and JI 0-50 0 02 03 01 o5 o6 o7 o: ov
in the detector design and the threshold calculations dkpe P

on both parameters for the optimal detector. Fig. 3 shows tiic
depenqency of the _threshol;d)n the INR value for a practical Fig. 4. Jammer blanking probability?, vs target blanking probability?;;
operational scenario. It can be noted that the dependencefahe suggested detector (Swerling-1 target).
7 on JNR is quite weak for sufficiently large JNR values, say
for INR > 15 dB. It should be noted that the Maisel structure
does not have any dependence on JNR for the calculation of !l NUMERICAL COMPARISONSWITH THE MAISEL
the thresholdr. STRUCTURE FORSWERLING-1 TARGETS
Fig. 4 presents the receiver operating characteristicS9)RO Setting threshold for a given Py, and SNR: The
curve for the suggested detector. ROC curve is given foetargindesired event for a SLB system is the blanking of a target
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Fig. 6. P, vs F' and P, vs n) for the classical and suggested SLB detectors (Swerliraydet).

presiding in the main-lobe when the jammer not present. Fadong with Fig. 5, to examine the blanking performance of
5 can be utilized to set the threshold values for both detectéthe system at a fixed probability of undesired event of false
at a givenP,;, and fixed SNR. As a practical remark, we wouldlanking.
like to note that SNR value in the threshold calculation $thou |t can be noted from Fig. 6(a) thdt values greater than
be selected for the weakest detectable targets, that idwéor 52 = 5 dB results in a significant loss of blanking probability
targets barely crossing the detection threshold. It candtedn irrespective of JNR value. This loss is quite expected since
from this figure that targets having the potential of crogsinthe condition ofF’ < 32 is violated. In contrast, the change of
the detection threshold with a significant margin (high SN, with respect ta) and JNR is rather smooth for the optimal
targets) have a smaller probability of getting blanked. Agle detector.
note, in Fig. 5(b), JINR= 20 dB is used when constructif@  variation of P;, with respect to JNR for a given
matrix of the optimal detector. P Figure 7(a) compares the performance of two systems
Variation of Py, with respect to JNR: The desired event at a fixed probability of target blanking. The target blamkin
for a SLB system is the blanking of jamming residing in therobability is set to 0.01 in Fig. 7(a). The threshold valteas
side-lobe. Fig. 6 shows the variation of this probabilitystes each detector at different SNR values are denoted in theefigur
threshold for different INR values. This figure can be wiliz legend INR=20-dB-is-utilizedfor-the thresheldealeulation
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Fig. 7. Comparison of, on JNR for Swerling-1 targets. Parametess:= 5
dB, w? = —30 dB

| values, i.e. SNRx 3 dB.
| which the conditionF” < 3? is satisfied, the performances of

a higher target blanking af;, = 0.1. For the givenP;;, value,
the problematic cases @ ~ 32 occurs at much smaller SNR
It can be noted that the cases for

Maisel structure and the optimal detector are very similar.

IV. OPTIMUM SLB SYSTEM FORSWERLING-0 TARGETS
AND ITS COMPARISON WITHMAISEL STRUCTURE

Swerling-0 target model for the complex return signals
and ¢ given in (1) assumes that the magnitudeaofind ¢
are constant and deterministic, but the phase is uniformly
distributed on(0, 27).

As in Swerling-1 target modeli and 5 are correlated.

1 The correlation under different hypotheses is as follows:

E[f§*; H1] = w|a|® and E[F§*; Hy] = f3|¢[*. To obtain the

1 joint pdfs of # and 3, we first write the conditional joint

pdf given the phase is deterministic. After that, we intégra
the result with respect to phase o\@r 27) and obtain joint
pdfs. The ratio of joint pdfs are calculated as in (3) to abtai
the optimum test. Due to space limitation, we include only
resultant LRT which is

2\c| - -
IO (|_2||S+ﬁr|) HQ

dof 2| | 2 770
Iy ( |5+w7’|>

(12)

1 wherely(-) is the modified Bessel function of the first kind.

The test given in (12) is optimum for Swerling-0 target. The

| statistic of the testy, is analytically difficult to obtain. So we

resort to Monte Carlo method for the performance assessment

: The thresholdy, is determined by generating; hypothesis

(signal plus noise) and searching the threshold whichfesgis

| the predetermined false blanking probabili; ).

Fig. 8 shows the threshold, dependence on JNR for

1 several values of SNR. The behavioumgfon JNR is different
1 when compared with Swerling-1 target. The threshold value
1 strongly depends on JNR, but is almost independent of SNR

for the values greater than 10 dB.

Fig. 9(a) presents thé&, comparison when the false blank-
ing probability P, is set to 0.01. The corresponding threshold
values are shown in figure legend. As in Swerling-1 case,
Maisel structure behaves poorly whén is not sufficiently
smaller thans?. It can be noted that, the performance gap
gets smaller when JNR increases.

Fig. 9(b) shows the identical comparison when the false
blanking probability is set to higher value of 0.05. The

It can be noted from Fig. 7(a) that the Maisel structureomments about Fig. 7(b) are still applicable.
behaves very poorly in two cases shown. Both of these case$ can be commented that optimum SLB structure achieves
correspond the case of having the threshblaxceeding or the high blanking probability at a relatively small INR vedu
being very close tg3?. As noted before, these cases are iwhen compared with Swerling-1 case. This is expected due to
violation of the conditiont” < 32. The other cases have muchassumption of non-fluctuating target model.

higher blanking probability; but have a poorer performaimce
comparison to the optimal detector. It can be noted that the

performance gap gets smaller as the thresliotaf the Maisel
structure gets smaller in comparisoné.
Fig. 7(b) presents the result of an identical comparison faim, an optimal detector is constructed for Swerling-1 and

V. CONCLUSION

The goal of this study is to justify the performance of
the conventional Maisel side-lobe blanking structure. fiis t



2 =30dB,82 =5dB, P, = 0.01

JNR (dB)

Fig. 8. Dependency ofip on JNR for the suggested detector (Swerling-0
target) (# of Monte Carlo trials 206).

Swerling-0 target models. The statistics of optimum SLB
detector for Swerling-1 targets is derived analyticalljheT
optimal detector requires the knowledge of SNR and JNR
values which is typically not known by the radar receiver.
The main goal of this study is to examine the performance
gap between the optimal receiver and Maisel structure ite spi
of the non-availability of the additional information fohe
optimal receiver.

The numerical results show that the Maisel structure per
forms in close proximity to the optimal detector when the
operating threshold of Maisel structurd’) is sufficiently
smaller than3? which is the running assumption for a reliable
operation with the Maisel structure in many applications.

A potential future work is the examination of detector
sensitivity to SNR and JNR values in order to better undadsta
the implementation feasibility of the optimal system. Amet
future work is the study of the optimal SLB system on the
detection and false alarm probability of the overall system
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